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ABSTRACT: Successful predictions are among the most compelling vali-
dations of any model. Extracting falsifiable predictions from nonlinear
multiparameter models is complicated by the fact that such models are
commonly sloppy, possessing sensitivities to different parameter combi-
nations that range over many decades. Here we discuss how sloppiness
affects the sorts of data that best constrain model predictions, makes
linear uncertainty approximations dangerous, and introduces computa-
tional difficulties in Monte-Carlo uncertainty analysis. We also present
a useful test problem and suggest refinements to the standards by which
models are communicated.
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Reverse engineering of biological networks entails working from data to mod-
els, and successful predictions are among the most important and compelling
validations of those models. Making useful predictions, however, entails work-
ing back from models to data. A model’s behavior depends both on its structure
(components and interactions) and on its parameters (numbers quantifying the
structure). In biology the focus is on structure; parameter values themselves
are generally of little interest. To test a model structure, quantitative predic-
tions must be tempered by rigorous estimates of their uncertainties, statistically
accounting for model behavior over all sets of parameters consistent with the
available data.1 An experimental result inconsistent with these uncertainties
is then strong evidence that some assumption in the model structure is false.
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We argue that any valuable assessment of reverse-engineering methods in
systems biology needs to address protocols and algorithms for evaluating
model prediction uncertainty.

Here we detail how to extract falsifiable predictions from complex biologi-
cal models. We focus on complications introduced by sloppiness, the presence
of orders-of-magnitude variation in sensitivity to different parameter combina-
tions.1 Complex biological models appear to be universally sloppy,2 along with
many other nonlinear multiparameter models.3 Sloppiness affects the sorts of
data that best constrain model predictions,2 makes linear uncertainty approxi-
mations dangerous, and introduces computational difficulties in Monte Carlo
uncertainty analysis. We discuss all these issues, introduce a useful test system,
and suggest refinements to the standards by which models are communicated.

SLOPPINESS

Sloppiness is illustrated conceptually in FIGURE 1A, which shows a plot
in parameter space where contours represent surfaces of constant model be-
havior. The model is very sensitive to stiff parameter combinations and very
insensitive to sloppy combinations.

These sensitivities can be quantified by a cost function, C(�), that measures
the change in a model’s behavior as parameters � vary. We Taylor expand C(�)
about a set of best-fit parameters �∗ yielding the Hessian matrix:

Hi j (�
∗) = ∂2C

∂�i∂�j

∣∣∣∣
�∗

. (1)

The eigenvectors of H are the principal axes of the ellipses shown in FIGURE 1A,
and the model’s sensitivity to parameter changes along each axis is proportional
to the square root of the corresponding eigenvalue.

FIGURE 1B shows eigenvalue spectra for several models (a subset of those
in Refs. 2 and 3). Column (i) is a model of growth factor signaling in PC12
cells,4 where the cost function measures the model deviation from a set of real
data (48 parameters and 68 data points). Columns (ii) and (iii) are models of
intra-receptor dynamics5 and circadian rhythms,6 respectively, where the cost
function measures the deviation from simulated data. (In these three columns
the derivatives for the Hessian (Eq. 1) are taken in the logarithms of the
biochemical parameters to reflect relative changes in parameter values.) In all
three cases the eigenvalues span more than 106, indicating that the models are
more than 1000 times more sensitive to some directions than others and that
the ellipses in FIGURE 1A are more than 1000 times as long as they are wide.

Sloppiness is not restricted to biology, as illustrated by column (iv) in
FIGURE 1B, which shows the eigenvalues for fitting parameters of a wave
function for use in quantum Monte Carlo. Nor is sloppiness restricted to
very complex models3; column (v) shows the spectrum for fitting the decay
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FIGURE 1. Conceptual illustration and quantification of sloppiness. (A) Contours
measure the change in model behavior as parameters vary. The model is sensitive to stiff
directions and insensitive to sloppy directions. Dots indicate a region of parameter sets
consistent with available data; the region is naturally aligned along sloppy directions, so
predictions from these data can have small uncertainty, even though parameter uncertainty
is large. (B) Sloppy eigenvalue spectra for models of: (i) growth factor signaling,4 (ii) intra-
receptor dynamics,5 (iii) circadian rhythms,6 (iv) quantum Monte Carlo wave functions,
and (v) sums of exponentials. Fitting a plane to data (vi), on the other hand, is not a sloppy
problem.

rates in a sum of 48 exponentials (see APPENDIX). Not all models are sloppy,
however; column (vi) shows the eigenvalue spectra for fitting a plane to a set
of data (a typical form of multiple linear regression). The eigenvalues all have
roughly the same magnitude, indicating that all directions in parameter space
are similarly sensitive, so the model is not sloppy. The presence of sloppiness
in such a diverse range of nonlinear models (i–v) suggests that it is a universal
feature of nonlinear multiparameter models.
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PREDICTION UNCERTAINTIES

Given that sloppiness is a common feature of complex biological models,
and nonlinear multiparameter models in general, we ask how sloppiness has
an impact on predictions and their uncertainties.

Constraining Parameters

The first step in making predictions from a model is constraining the model’s
parameters. Because biological models are sloppy, predictions are generally
much more efficiently constrained by collectively fitting model parameters
than by directly measuring them.2 This can be understood from FIGURE 1A.
Fitting parameters to data naturally constrains the region of parameter sets
consistent with those data (indicated by the dots) to lie along directions to
which the model is insensitive. Thus the parameter sets encompass relatively
few model behaviors, and predictions have small uncertainties. Because the
model is sloppy, predictions can have small uncertainties in spite of large
regions of parameter uncertainty, as long as that parameter uncertainty is
correlated along sloppy directions.

By contrast, direct parameter measurements yield uncorrelated parameter
uncertainties. For example, if �2 were known less precisely than �1, the re-
gion of acceptable parameter sets would be a vertical ellipse in FIGURE 1A.
We find that generally very few bare parameter directions are sloppy direc-
tions,2 so, unless the parameters have been measured very precisely, such an
ellipse will encompass many behaviors, and prediction uncertainties will be
correspondingly large.

Estimation Algorithms

After optimizing to find the best-fit set of parameters, prediction uncer-
tainties can be calculated by accounting for model behavior over the region
of parameter space that is consistent with the available data. Here we con-
sider two approaches to calculate uncertainties: linearized covariance analysis
(LCA) and Monte Carlo analysis (MCA).

Linear Covariance Analysis

LCA involves two approximations: a quadratic expansion of the cost func-
tion about the best-fit parameters and a linear approximation of the model
response to parameter changes. The standard deviation �y of the prediction y
is then given by
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�2
y =

∑

i, j

∂y

∂�i
(H−1)i j

∂y

∂�j

∣∣∣∣
�

. (2)

LCA is computationally inexpensive, particularly in problems where the cost
function is a sum of squared residuals (i.e., C(�) = ∑

k rk(�)2). Then the
Hessian matrix can be approximated by the Fisher information matrix:

Fi j (�) =
∑

k

∂rk

∂�i

∂rk

∂�j
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�

≈ Hi j (�). (3)

This approximation is very useful because for many models (including
those based on differential equations) first derivatives can be obtained semi-
analytically, and obtaining stable finite-difference derivatives is difficult in
sloppy problems.

Monte Carlo Analysis

MCA explicitly samples from the distribution of parameter sets consistent
with the available data. The posterior distribution of parameter sets given
model M and data D is given by:

P(�|D, M) ∝ exp(−C(�)). (4)

After an ensemble of parameter sets has been drawn from this distribution, the
uncertainty on any quantity can be estimated simply by calculating it for each
member of the parameter ensemble and noting the resulting variation.

Numerous algorithms exist to sample distributions like that in Equation 4,
but obtaining a well-converged ensemble can be computationally challenging.
After comparing predictions from LCA and MCA, we will discuss specific
algorithms and speed-ups for MCA. Importantly, however, once obtained for
a given model and set of constraining data, the ensemble can be used for any
number of predictions.

Comparison

The approximations involved in LCA may introduce significant artifacts,
as illustrated in FIGURE 2, which plots a particular prediction of our growth
factor signaling model.4 LCA dramatically overestimates the uncertainty in
the prediction, particularly at early times, reducing the power of the pre-
diction to test the model structure. For example, an experimental result of
3/4 activity at 8 minutes lies outside the bounds of the well-converged MCA
prediction and would suggest that some assumption in the model structure
is probably incorrect. The LCA prediction, however, would not offer this
insight.
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FIGURE 2. Comparison of linearized covariance analysis (LCA) and Monte Carlo
analysis (MCA). Dark gray area represents the one-standard-deviation uncertainty bound
from LCA for the activity of Mek, given NGF stimulation in our growth factor signaling
model4; light gray area shows the corresponding MCA result. The dashed line indicates the
prediction from the best-fit set of parameters. Note how dramatically the LCA prediction
overestimates the uncertainty.

In FIGURE 2, LCA overestimated the uncertainty, but in some cases LCA
may also underestimate uncertainty. Such underestimation may be even more
damaging, as it may cause one to reject a model that MCA would reveal is
actually consistent with the data.

The difference between LCA and MCA arises from nonlinearities in the cost
surface and the model response. In particular, the sloppy directions determined
by the Hessian matrix are exactly those directions that have small quadratic
components in the cost. In these directions higher-order terms are responsible
for constraining the behavior. We observe that prior information on parameter
ranges can mimic the effect of these higher-order terms, allowing the LCA to
produce uncertainty estimates comparable to those of MCA. Further, we are
investigating the use of curvature measures of nonlinearity7 to predict when
the LCA will be inaccurate for sloppy models.

Efficient Monte Carlo for Sloppy Models

Although sloppiness implies that many sets of parameters will be consistent
with the data, those consistent sets remain a very small fraction of the entire pa-
rameter space. Directly sampling from the posterior distribution (Equation 4)
is thus infeasible. We use Markov chain Monte Carlo to sample the distribution,
building our ensemble via a random walk through parameter space.8
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For sloppy models the cost function is very stiff in some directions and very
sloppy in others. If we take steps at the scale of the stiff directions, exploring
the sloppy directions will be very slow, but if the step size is too large, moves
in the stiff directions will cause very few steps to be accepted, also slowing
convergence. Thus it is vital to use importance sampling, taking larger steps
in some directions than others. We find that it is natural to scale steps using
the square root of the regularized Fisher information matrix and that this gives
reasonable acceptance probabilities. Furthermore, we find that the low-cost
basin is not only very narrow, but also curved, so it may be necessary to
recalculate the FIM each step to maintain a reasonable chance of accepting
attempted moves.

Building parameter ensembles in sloppy systems can also challenge algo-
rithms that solve the model equations. For example, the ensemble built for
our differential equation model of growth factor signaling4 explored regions
of parameter space where the equations were very difficult to integrate, even
for well-tested stiff integrators. Resulting errors must be caught, and we found
it useful to dynamically tighten integration tolerances. Significantly for bio-
chemical networks, Michaelis–Menten and Hill-type equations can become
particularly difficult to numerically integrate when exploring parameter space
because the “turning points” in these curves can become incredibly sharp.
Without sufficient guidance, the integrator can overstep these points and land
on a different, unphysical solution to the equations.

STANDARDS FOR THE COMPUTATIONAL SYSTEMS
BIOLOGY COMMUNITY

The Systems Biology Markup Language (SBML)9 has emerged as a commu-
nity standard for the definition of models of biomolecular reaction networks.
By making our own code—SloppyCell10—able to read and write SBML mod-
els, we have been able to apply our analyses to a number of published models
in the literature, demonstrating the ubiquity of sloppiness.2 We have found
that this standard, while adequate for summarizing finished models, is inad-
equate for capturing the larger process of reverse engineering, in particular
the derivation of model structure and parameter values from data. In addition,
since biological experimentation often involves creating topological variants
(mutants) of a wild-type, biological modeling requires working with multiple
related networks which collectively define a “model.” While SBML contains
constructs for defining networks, it provides no data structures or operations
for modifying or relating networks. The biological reverse-engineering com-
munity will—at some stage—need to address these deficiencies in current
standards if community progress is to continue.
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CONCLUSIONS

Model validation is a crucial part of reverse-engineering biological net-
works, and making and testing predictions is one of the most important parts
of validation. To usefully test model structure, predictions must be accom-
panied by uncertainty estimates that account for the underlying parameter
uncertainty. Linearized covariance analysis may introduce important artifacts,
so, when possible, Monte Carlo analysis should be preferred, and such analysis
has specific numerical challenges that need to be overcome. As the community
and associated standards develop we anticipate that techniques to make and
test predictions will prove increasingly important.

APPENDIX

Fitting Exponentials

The fitting of a sum of exponentials is a classic problem,11 and, as seen
in FIGURE 1B, it is sloppy. Fitting exponentials has proven a very useful test
problem both for analysis and for algorithm development. It is physically moti-
vated, but computationally convenient; the cost and Hessian matrix are simple
functions of the true decay rates and initial amounts. This facilitates generation
of high-quality statistics to investigate questions concerning sloppiness, such
as the relationship between parameter degeneracy and the spacing between
eigenvalues. It also makes fitting exponentials a useful test case for comparing
and refining optimization algorithms.
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